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The Finite-Difference–Time-Domain
Method and its Application

to Eigenvalue Problems ‘

DOK HEE CHOI AND WOLFGANG J. R. HOEFER, SENIOR MEMBER, IEEE

Abstract —This paper describes the application of the finite-difference

method in the time domain to the solution of three-dimensional (3-D)

eigenvahre problems. Maxwell’s equations are discretized in space and

time, and steady-state solutions are then obtained via Fourier transform.

While achieving the same accuracy and versatility as the TLM method, the

finite-difference-time-domain (FD-TD) method requires less than half

the CPU time and memory under identical simulation conditions. Other

advantages over the TLM method include the absence of dielectric

boundary errors in the treatment of 3-D inhomogeneous planar strnctnres,

such as microstrip. Some numerical results, including dispersion curves of

a microstrip on anisotropic substrate, are presented.

I. INTRODUCTION

T HE TLM METHOD has been successfully applied to

various microwave circuit problems for more than ten

years. The special advantages of the TLM technique over

other numerical methods are well illustrated by Johns and

Beurle [1] in their original paper on the method. Since

then, several improvements have been made to this tech-

nique by various authors in order to enhance the accuracy

of the solution and economize CPU time and memory

space [2]–[5]. Mariki [7] has extended the TLM method to

analyze anisotropic media, and Saguet and Pic [4] as well

as A1-Mukhtar and Sitch [5] have employed a graded mesh

to make the algorithm faster and more efficient.

Although the graded mesh algorithm reduces memory

space requirements, it demands far more iterations than

the original method for equal frequency resolution [5]. This

is especially obvious in the case of three-dimensional (3-D)

simulations where the grade ratio N requires an additional

N 2 – 1 iterations. These requirements of large computer

resources may critically limit the applicability of the TLM

technique.

Thus, Saguet [16] has proposed a simplified node which

reduces the number of variables to be processed and stored

at each node by one third. However, this modification

increases the velocity error. A further reduction in compu-

tational expenditure has been proposed by the authors [8];

instead of the original vector solution, we obtain a scalar

potential solution using a scalar 3-D network. However,
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the scalar approach is limited to problems which lead to

uncoupled modal solutions, i.e., TE and TM or LSE and

LSM fields.

The major reason for the large CPU memory demand of

this technique resides in the basic 3-D TLM concept. In

order to represent each electromagnetic component, each

3-D unit cell requires 26 real memory spaces, 12 for pulse

storage and 14 for additional network parameters. There-

fore, each operation on each node involves a large number

of variables, requiring considerable computer CPU space

and time. Furthermore, experience has shown that the

number of iterations increases with the complexity of the

structure under study. For example, the accurate analysis

of a finline requires easily over 1000 iterations. Given these

massive requirements, we have searched for an alternative

numerical technique that possesses the advantages of the

TLM approach but needs fewer computer resources. As a

result, a new algorithm is proposed based on both the

finite-difference-time-domain (FD-TD) and TLM meth-

ods.

The FD-TD method was first formulated by Yee [6],

and has been applied extensively to scattering and cou-

pling problems with open boundaries [9]–[15], i.e., to the

solution of deterministic problems. We noted the similarity

between this method and the TLM method, which has

been widely used in the numerical solution of the electro-

magnetic eigenvalue problems in the time domain. Since

the TLM method is based on the computation of the

impulse response of a large mesh of transmission lines,

much unwanted information is usually generated.

We have therefore developed a novel procedure which

increases the numerical efficiency of the time-domain ap-

proach without sacrificing its advantages. The method

differs from the classical FD–TD method in the assign-

ment of initial field values and the application of the

Fourier transform to the time-domain solution. In the

foIlowing, we will describe this method and its application

to some typical microwave problems.

II. YEE’S ALGORITHM

Maxwell’s equations have been expressed in finite-dif-

ference form by Yee [6] to solve two-dimensional (2-D)

wave scattering problems. Subsequently, 3-D scattering

problems have been solved by Taflove and other workers
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[9]-[15]. We will adopt Yee’s original algorithm for the

three-dimensional Maxwell’s equations. Also, we will ex-

tend the concept further to include anisotropic media.

In a rectangular coordinate system, the source-free

Maxwell’s equations can be written as first-order hyper-

bolic equations

d~/dt = IAXI d~/dx + IAYI d~/dy + IA,l dH/dz

dH/dt = IBXI d~/dx + IBYI d~/dy + IB,I d~/dz (1)

where ~= (EX, EY, E=)f, ~= (HX, HY, H=)f, and

10 6;: 01 1-,;. o 0]
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Here, CXX, CYY, and 6== are the diagonal elements of the

permittivity tensor. All BX, BY, and B= are expressed by

replacing CXX, CYY, and C== by – pXx, – pYY, and – pZZ

components, which are the diagonal elements of the per-

meability tensor. Then each of these scalar equations can

be expressed in finite-difference form. Following Yee’s

nomenclature, any function of space and time is dis-

cretized

1 Fn(i, j,k~=F(i Ax, jAy, kAz, nAt)

where Ax = A y = Az = Al is the space increment and At is

the time increment. By positioning the components of ~

and ~ on the mesh as depicted in Fig. 1 and evaluating ~

and ~ at alternate half time steps, we obtain the compo-

nents of Maxwell’s equations.

HJ+’/2(i, j+l/2, k+l/2)

=H;-’i2(i, j+l/2, k+l/2)

+s/PXX(i, j+l/2, k+l/2)[E~(i, j+l/2, k+l)

–E;(i, j+l/2, k)+ E:(i, j,k+l/2)

-E:(i, j+l, k+l/2)] (2a)

H;+112(i+l/2, j, k +1/2)

= HJ-’/2(i +1/2, j, k +1/2)

+s/PYY(i +1/2, j,k+l/2)[EJ(i +1, j,k+l/2)

–E~(i, j,k+l/2)+EJ(i+l/2, j,k)

– E~(i+l/2, j, k +1)] (2b)

H:+l/2(i+l/2, j+l/2, k)

=H:-’/2(i+2j+l+ 2k)k)

+s/Vzz(i +1/2, j+l/2, k)[E~(i+l/2, j+l, k)

–E~(i+l/2, j,k)+Ef(i, j+l/2, k)

–E~(i+l, j+l/2, k)] (2C)

/ x

E*

(l-l,j, kl

h,j,k) ,

(2d)

Fig. 1. The position of the field components m Yee’s mesh.

E;+l(i+l/2, j,k)

=EJ(i+l\2, j,k)+s/fXX(i+l/2, j,k)

[. H~+l/2(i +1/2, j+l/2, k)

–H:+l/2(i+l/2, j–1/2, k)

+ H~+l/2(i+l/2, j, k -1/2)

– HJ+l/2(i+l/2, j, k +1/2)]

E~+l(i, j+l/2, k)

=E~(i, j+l/2, k)+s/cYY(i, j+l/2, k)

. [H”+112(i, j+l/2, k +1/2)

-~:+112n(i, j+l/2, k-l/2)

+ HZ”+l/2(i–l/2, j+l/2, k)

–--H:+lz2(i+l/2, j+l/2, k)] (2e)

EY+l(i, j,k+l/2)

=E~(i, j,k+l/2)+s/tZZ(i, j,k+l/2)

[o H~+l/2(i+l/2, j,k+l/2)

- HJ+l/2(i -1/2, j, k +1/2)

+ H;+l/2(i, j-1/2, k +1/2)

- HJ+lz2(i, j+l/2j k +1/2)] (2f)

where the stability factor s = c At /Al, and c is the velocity

of light. In these expressions, E and H are normalized

such that the characteristic impedance of space is unity.

The condition for stability of (1) in free space is [10]

s<l/JT. (3)

III. BOUNDARY CONDITIONS

So far, a space-time mesh has been introduced and

Maxwell’s equations have been replaced by a system of

finite-difference equations. Difficulties arise when the do-
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main in which the field must be computed is unbounded.

Since no computer can store an unlimited amount of data,

a special technique must be used to limit the domain in

which the numerical computation is made, by introducing

so-called absorbing or soft boundary conditions. These

conditions have been described by Taylor et al. [9], who

use a simple extrapolation method, and by Taflove and

Brodwin [10], who simulate the outgoing waves and use an

averaging process in an attempt to account for all possible

angles of propagation of the outgoing waves. Kunz and

Lee [12] use the radiation condition at a large distance

from the center of the scatterer to obtain an absorbing

boundary condition. Mur [13] employs a second-order

radiation condition to improve the accuracy of the results.

Although these schemes have been used in scattering prob-

lems in the past, no ideal reflection-free boundary condi-

tion has been proposed so far.

However, in the formulation of eigenvalue problems,

only “hard boundaries’’ —usually represented by conduct-

ing walls—occur. At these boundaries, the tangential elec-

tric and the normal magnetic field components are main-

tained at zero. For example, on a perfectly conducting wall

in the plane i = 1 (see Fig. 1)

{

E;(l, j+l/2, k) =0

for all n E;(l, j,k+l/2) =0

H;(l, j+l/2, k+l/2)=o

(the third condition is implicit in the previous two, but its

implementation reduces numerical errors).

IV. INITIAL VALUES

In most scattering problems, an impulsive or sinusoidal

plane wave is injected at the beginning of the computation.

However, in eigenvalue problems, the direction of the

propagation vector is usually not known and depends on

the space coordinates and on the eigenvalue that is to be

found. In these cases, the logical choice is an isotropic

pulse that propagates in the radial direction. The spatial

pulse envelope should be wide enough with respect to the

mesh size not to accumulate numerical errors due to

overshoot and ringifig as it propagates through the space

lattice.

A better way to start the computation is to estimate the

field distribution of the desired mode in the structure first

and then choose the initial value accordingly. The expe-

rienced researcher usually has a good idea of the ap-

proximate modal field distributions in a structw-e and is

therefore able to make an educated guess of the steady-state

field pattern for a particular eigenmode. This procedure is

equivalent to the excitation of a TLM mesh with a weighted

impulse distribution, and is somewhat similar to the way in

which one chooses appropriate basis functions in the spec-

tral-domain approach.

V. OUTLINE OF THE NUMERICAL PROCEDURE

The application of the FD–TD method will be discussed

using a rectangular resonator as an example. A continuous

I

(a)

JE,I

G05 067
AI!IA

0.11 0.15

(b)

Fig. 2. (a) Field distribution of an empty rectangular resonator ob-
tained with the FD–TD method. (b) Output spectrum obtained with
both the FD–TD and TLM methods under identicaf conditions

medium is replaced with a 3-D uniform mesh. To solve the

system of equations (2) in this mesh, initial values must be

assigned first as described in the previous section. For a

rectangular-type resonator, a simple sinusoidal function is

an appropriate choice for the dominant mode eigenvalue.

As n increases, the discrete time functions for ~ and ~

fields evolve towards the steady state which is characteris-

tic of the desired mode in the geometry. In this way, the

evolution of all six field components is obtained simulta-

neously at discrete time points n At. The final steady-state

field distribution may be calculated by taking the time

average of the time-domain solution at each mesh point.

Thus, the steady-state solution is given by

F(iO, jO, kO) = ~lF”(iO, jO, kO) l/N. (4)
n

This simple procedure to obtain the final field distribution

is another advantage over the TLM method, which re-

quires two simulations for finding the fields of a given

mode.

In eigenvalue problems, the steady-state solution is a

time-harmonic function, from which the eigenvalues can
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(a)

a=l 2dl

b= 6dI

c= 8dl
S= 2dl

E,=3.75

(b) a=20dl
b= 6dl
C= 8dl

ha----i
a’ =5dl

b’ =4dl

C’ =3dl
c c,= 16

(c)

i

Fig. 3. Three-dimensional inhomogeneous resonators ahalyzed in this
study.

TABLE I
COMPARISON OF RESULTS FOR THE NORMALIZED RESONANT

FREQUENCIES A1/A OBTAINED WITH THE TLM AND FD-TD

METHODS UNDER IDENTICAL SIMULATION CONDITIONS FOR THE

GEOMETRIESIN FIG. 3

Fig.3 Mode s/a TRM TLM (CPU time) FD-TD (CPU time)
.- -.1 . . .. ...

14E...H==:lIIl{~”::til-oo{?~?!5)d)d1/6 0.05220 0.0516 (144) I 0.0517 (51)

b) Hybrid ! 0.0278 (357) 0.0278 (1 17)

c) Hybrid 0.0405 (357) 0.0405 (1 17)

be extracted by discrete Fourier transform, as in the TLM

method

S(~) =~F”(iO, jO, kO)exp(–j2rsnj). (5)
n

Both the stability factor s and the number of iterations n

strongly affect the spectral response.

In order to test this algorithm for validity, it has been

applied to a simple rectangular cavity with sides 12 Al x

6 Al x 8 Al. We have assumed a dominant TEIOI mode in

the initial value assignment. The time-domain solution is

given in Fig. 2(a). Discontinuous field figures are due to

the numerical error caused by the finite-difference form of

(2). Fig. 2(b) compares the frequency responses obtained
with the FD–TD and TLM methods under identical con-

ditions. The responses are not distinguishable. Five

hundred iterations have been used. The peak of the solu-

tion is located at A1/X = 0.0750 in both methods. The

exact analytical solution is 0.07511. Even though a small

numb& of meshes is used in this algorithm when com-

pared with the scattering problems in [9]-[13], it is noted

that the accuracy in the solution of the eigenvalue prob-

lems is better than that of the scattering problems by one

order of magnitude.

VI. NUMERICAL RESULTS

We have applied this technique to most of the examples
described in the TLM literature and obtained practically

identical results. The method requires less than one-half of

l-—----’-=
Fig. 4. Finline cavity

TABLE II
RESONANT FREQUENCIES OF THE UNILATERAL

FINLINE CAVITY IN FIG. 4, OBTAINED WITH

VARIOUS METHODS

a=20mm

b.10m

c=15mm

d=4mm

S=lmn

E = 2.22
r

GHz

~p
0.0 0.1 0.2 0.3 0.4

Fig. 5. Dispersion diagram of unilateral finline with the cross-sectional
geometry given in Fig. 4.

the CPU time spent by the equivalent TLM program

under identical conditions, including the initial excitation

distribution. Furthermore, while the TLM procedure re-

quires 22 real memory stores per 3-D node in an isotropic

dielectric, the FD–TD method requires only seven real

memcmy stores per node. Fig. 3(a), (b), and (c) shows

structures for which solutions have been computed with

this method. The dominant resonant frequencies of these

structures are given and compared with the TLM solution

in” Talble I. The inhomogeneous rectangular cavity of Fig. 3

(b) and (c) illustrates the capability of this algorithm to

solve hybrid field problems. The number of nodes chosen

in each problem is the same as that employed in the TLM

solution.
Furthermore, we have computed the resonant frequency

of a finline resonator (Fig. 4.) treated previously by Saguet

[16]. Results are compared in Table II, which includes a
value obtained with the spectral-domain method by Saguet.

Fig. 5 shows the dispersion characteristics of a finline with

the same cross section, as obtained with our method.

Resulks calculated with our spectral-domain program are

also shown in the same figure. In order to compare conver-

gence of both time-domain methods, solutions obtained

after every fifth iteration are drawn in Fig. 6. The results

show virtually identical convergence.
To show the versatility of this method, the characteris-

tics c~f a microstrip resonator on anisotropic substrate are
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F! GHz)

11.5
+

t

----- TLM

— FD-TD

los~mo
2CQ 400 6(X) 8~

Number of iterations

Fig. 6. Stability and convergence of the TLM and FD–TD methods as
a function of the number of Iterations. The solution of the finline
problem in Fig. 4 N represented.

t-———~——————+ h/Al = 3

w/Al = 3
Al = 0.5 ml

‘xx = ’22 = 9.4

‘YY
= 11.6

Fig. 7. Microstnp cavity on anisotropic substrate,

TABLE III
DOMINANT RESONANT FREQUENCIES OBTAINED

BY BOTH THE TLM AND THE FD–TD METHODS

computed in the last example, shown in Fig. 7. Several

different resonant frequencies obtained by changing the

length c are tabulated in Table III. It is well known [17]

that the TLM simulation of 3-D inhomogeneous planar

structures involves dielectric interface ambiguity. The best

way to resolve this error is to employ two dielectric sub-

strate thicknesses differing by one Al. In our case, 3Al and

4 Al are used. The final result is obtained by taking the

average of the solutions obtained for these two values. In

order to illustrate this

with the TLM method

process, frequency spectra obtained

for the two cases where c is equal to

10 Al are shown in Fig. 8. The solution obtained with the

FD–TD method is also drawn in the same figure. As

expected, the latter solution is located exactly between the

two values obtained with the TLM method. This clearly

illustrates the accuracy and convenience of the FD–TD

method in such situations. Fig. 9 shows the dispersion

characteristics of the microstrip which has the same cross

section as that in Fig. 7. Again, both methods give very

similar results except at higher frequencies, where the

discretization errors associated with both methods become

more pronounced, and their differences are more visibIe.

VII. CONCLUSIONS

The proposed new application of the FD-TD method to

3-D eigenvalue problems gives practically the same results
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GHz

16

12

8

Fig. 8. Frequency spectra for the microstrip problem in Fig. 7, showing
the effect of dielectric interface error in the TI.M solution.

v4 ,“*
. . . : isotropic substrate E,=9.4

,,” ‘-–-: TLM \
, anisotropic medium

. — : FD–TD

[4]

[5]

[6]

[7]

[8]

[9]

/“ em= e,? 9.4, EV=l I.6

P

[10]

o. 0.2 0.4 0.6 0.8 1.0

Fig. 9. Dispersion diagram of the anisotropic microstrip in Fig. 7.
[11]

as the TLM method under identical simulation conditions.

However, the overall CPU time and storage requirements 1121

are typically less than half those needed in the TLM

solution. Other advantages reside in the ease with which

field distributions can be computed, and in the elimination ~1~1

of dielectric boundary error in planar structures. Further

efforts are being made to implement losses, variable mesh

size, and nonlinearity in the FD–TD procedure. [14]
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