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The Finite-Difference— Time-Domain
Method and its Application

to Eigenvalue Problems
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Abstract —This paper describes the application of the finite-difference
method in the time domain to the solution of three-dimensional (3-D)
eigenvalue problems. Maxwell’s equations are discretized in space and
time, and steady-state solutions are then obtained via Fourier transform.
While achieving the same accuracy and versatility as the TLM method, the
finite-difference~time-domain (FD-TD) method requires less than half
the CPU time and memory under identical simulation conditions. Other
advantages over the TLM method include the absence of dielectric
boundary errors in the treatment of 3-D inhomogeneous planar structures,
such as microstrip. Some numerical results, including dispersion curves of
a microstrip on anisotropic substrate, are presented.

I. INTRODUCTION

HE TLM METHOD has been successfully applied to

various microwave circuit problems for more than ten
years. The special advantages of the TLM technique over
other numerical methods are well illustrated by Johns and
Beurle [1] in their original paper on the method. Since
then, several improvements have been made to this tech-
nique by various authors in order to enhance the accuracy
of the solution and economize CPU time and memory
space [2]-[5]. Mariki [7] has extended the TLM method to
analyze anisotropic media, and Saguet and Pic [4] as well
as Al-Mukhtar and Sitch [5] have employed a graded mesh
to make the algorithm faster and more efficient.

Although the graded mesh algorithm reduces memory
space requirements, it demands far more iterations than
the original method for equal frequency resolution [5]. This
is especially obvious in the case of three-dimensional (3-D)
simulations where the grade ratio N requires an additional
N?—1 iterations. These requirements of large computer
resources may critically limit the applicability of the TLM
technique.

Thus, Saguet [16] has proposed a simplified node which
reduces the number of variables to be processed and stored
at each node by one third. However, this modification
increases the velocity error. A further reduction in compu-
tational expenditure has been proposed by the authors [8];
instead of the original vector solution, we obtain a scalar
potential solution using a scalar 3-D network. However,
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the scalar approach is limited to problems which lead to
uncoupled modal solutions, i.e., TE and TM or LSE and
LSM fields.

The major reason for the large CPU memory demand of
this technique resides in the basic 3-D TLM concept. In
order to represent each electromagnetic component, each
3-D unit cell requires 26 real memory spaces, 12 for pulse
storage and 14 for additional network parameters. There-
fore, each operation on each node involves a large number
of variables, requiring considerable computer CPU space
and time. Furthermore, experience has shown that the
number of iterations increases with the complexity of the
structure under study. For example, the accurate analysis
of a finline requires easily over 1000 iterations. Given these
massive requirements, we have searched for an alternative
numerical technique that possesses the advantages of the
TLM approach but needs fewer computer resources. As a
result, a new algorithm is proposed based on both the
finite-difference~time-domain (FD-TD) and TLM meth-
ods.

The FD-TD method was first formulated by Yee [6],
and has been applied extensively to scattering and cou-
pling problems with open boundaries [9]-[15], i.e., to the
solution of deterministic problems. We noted the similarity
between this method and the TLM method, which has
been widely used in the numerical solution of the electro-
magnpetic eigenvalue problems in the time domain. Since
the TLM method is based on the computation of the
impulse response of a large mesh of transmission lines,
much unwanted information is usually generated.

We have therefore developed a novel procedure which
increases the numerical efficiency of the time-domain ap-
proach without sacrificing its advantages. The method
differs from the classical FD-TD method in the assign-
ment of initial field values and the application of the
Fourier transform to the time-domain solution. In the
following, we will describe this method and its application
to some typical microwave problems.

II. YEFE’S ALGORITHM

Maxwell’s equations have been expressed in finite-dif-
ference form by Yee [6] to solve two-dimensional (2-D)
wave scattering problems. Subsequently, 3-D scattering
problems have been solved by Taflove and other workers
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[9]-[15]). We will adopt Yee’s original algorithm for the
three-dimensional Maxwell’s equations. Also, we will ex-
tend the concept further to include anisotropic media.

In a rectangular coordinate system, the source-free
Maxwell’s equations can be written as first-order hyper-
bolic equations

dE/dt =|A,|dH/dx +|A,|dH/dy + |A,|dH /dz
dH/dt = |B,|dE/dx +|B,|dE/dy + |B,|dE/dz
where E = (E_, E,E), H=(H, H, H,), and

(1)
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Here, €,,, €,,, and ¢, are the diagonal elements of the
permittivity tensor. All B,, B, and B, are expressed by
replacing €,,, €, and €,, by —p,,, —p,, and —p,,
components, which are the diagonal elements of the per-
meability tensor. Then each of these scalar equations can
be expressed in finite-difference form. Following Yee’s
nomenclature, any function of space and time is dis-
cretized

: F™(i, j,k)=F(iAx, jAy,kAz, nAt)

where Ax = Ay = Az = Al is the space increment and At is
the time increment. By positioning the components of E
and H on the mesh as depicted in Fig. 1 and evaluating E
and H at alternate half time steps, we obtain the compo-
nents of Maxwell’s equations.

H'Y2(i, j+1/2,k+1/2)
=H"Y2(i, j+1/2,k+1/2)
+s/w (i, j+1/2,k+1/2)[EX, j+1/2,k +1)
—E}i, j+1/2,k)+ E](i, j,k+1/2)
—Eri, j+1,k+1/2)]| (2a)
HIY2(i4+1/2, j,k+1/2)
=H!"V(i+1/2, j,k+1/2)
+5/p,, (i+1/2, jk+1/2)[EMNi+1, j k+1/2)
—E"(i, j,k+1/2)+ EMNi+1/2, j, k)
—EMi+1/2, j,k+1)]
HPVY2(i+1/2, j+1/2,k)
=H"Y?(i+1/2, j+1/2,k)
ts/p,(i+1/2, j+1/2,k)[EXi+1/2, j+1,k)
—EMNi+1/2,j,k)+ E}(i, j+1/2,k)

(2b)

—E}i+1, j+1/2,k)]

(2¢)
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Fig. 1. The position of the field components 1n Yee's mesh.

EI N i+1/2,4,k)
= E"(i+1/2, j,k)+s/e, (i+1/2, ), k)
(HIV (14172, j41/2,k)
—H"Y2(i+1/2,j-1/2,k)
+HPVAi 4172, jk—1/2)

~ H"V2(i41/2, j, k+1/2)] (2d)

E; i, j+1/2,k)
=E!(i, j+1/2,k)+s/¢, (i, j+1/2,k)
JH™ V2, 4172,k +1/2)
— H VY20 j+1/2,k—1/2)
+H Y2 (i-1/2, j+1/2,k)
— H"Y2(i41/2, j+1/2, k)]

(2¢)

ErMY(i, j,k+1/2)
=E"i, j. k+1/2)+s/e,,(i, j.k+1/2)

(HIVAi 4172, j,k+1/2)
—H}"Y2(i-1/2, j,k+1/2)
+ H'2(i j=1/2,k+1/2)

— HIMY2(i, j+1/2,k+1/2)] (2f)

where the stability factor s = cAz /Al and c is the velocity
of light. In these expressions, E and H are normalized
such that the characteristic impedance of space is unity.
The condition for stability of (1) in free space is [10]

s<1/V3. (3)

1II. BoUNDARY CONDITIONS

So far, a space-time mesh has been introduced and
Maxwell’s equations have been replaced by a system of
finite-difference equations. Difficulties arise when the do-
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main in which the field must be computed is unbounded.
Since no computer can store an unlimited amount of data,
a special technique must be used to limit the domain in
which the numerical computation is made, by introducing
so-called absorbing or soft boundary conditions. These
conditions have been described by Taylor et al. [9], who
use a simple extrapolation method, and by Taflove and
Brodwin [10], who simulate the outgoing waves and use an
averaging process in an attempt to account for all possible
angles of propagation of the outgoing waves. Kunz and
Lee [12] use the radiation condition at a large distance
from the center of the scatterer to obtain an absorbing
boundary condition. Mur [13] employs a second-order
radiation condition to improve the accuracy of the results.
Although these schemes have been used in scattering prob-
lems in the past, no ideal reflection-free boundary condi-
tion has been proposed so far.

However, in the formulation of eigenvalue problems,
only “hard boundaries” —usually represented by conduct-
ing walls—occur. At these boundaries, the tangential elec-
tric and the normal magnetic field components are main-
tained at zero. For example, on a perfectly conducting wall
in the plane i =1 (see Fig. 1)

Ey"(l, j+1/2,k)=0
forall n{ E*(1, j,k+1/2)=0
H!1,j+1/2,k+1/2)=0
(the third condition is implicit in the previous two, but its
implementation reduces numerical errors).
Iv.

In most scattering problems, an impulsive or sinusoidal
plane wave is injected at the beginning of the computation.
However, in eigenvalue problems, the direction of the
propagation vector is usually not known and depends on

INITIAL VALUES

the space coordinates and on the eigenvalue that is to be -

found. In these cases, the logical choice is an isotropic
pulse that propagates in the radial direction. The spatial
pulse envelope should be wide enough with respect to the
mesh size not to accumulate numerical errors due to
overshoot and ringing as it propagates through the space
lattice.

A better way to start the computation is to estimate the
field distribution of the desired mode in the structure first
and then choose the initial value accordingly. The expe-
rienced researcher usually has a good idea of the ap-
proximate modal field distributions in a structure and is
therefore able to make an educated guess of the steady-state
field pattern for a particular eigenmode. This procedure is
equivalent to the excitation of a TLM mesh with a weighted
impulse distribution, and is somewhat similar to the way in
which one chooses appropriate basis functions in the spec-
tral-domain approach.

V. OUTLINE OF THE NUMERICAL PROCEDURE

The application of the FD-TD method will be discussed
using a rectangular resonator as an example. A continuous
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Fig. 2. (a) Field distribution of an empty rectangular resonator ob-
tained with the FD-TD method. (b) Output spectrum obtamned with
both the FD-TD and TLM methods under identical conditions

medium is replaced with a 3-D uniform mesh. To solve the
system of equations (2) in this mesh, initial values must be
assigned first as described in the previous section. For a
rectangular-type resonator, a simple sinusoidal function is
an appropriate choice for the dominant mode eigenvalue.
As n increases, the discrete time functions for £ and H
fields evolve towards the steady state which is characteris-
tic of the desired mode in the geometry. In this way, the
evolution of all six field components is obtained simulta-
neously at discrete time points n Ar. The final steady-state
field distribution may be calculated by taking the time
average of the time-domain solution at each mesh point.
Thus, the steady-state solution is given by
F(iOajo,ko)=Z|F"(io’j07ko)l/N- (4)
n
This simple procedure to obtain the final field distribution
is another advantage over the TLM method, which re-
quires two simulations for finding the fields of a given
mode.
In eigenvalue problems, the steady-state solution is a
time-harmonic function, from which the eigenvalues can
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Fig. 3. Three-dimensional inhomogeneous resonators analyzed in this

study.

TABLE I
COMPARISON OF RESULTS FOR THE NORMALIZED RESONANT
FREQUENCIES A/ /A OBTAINED WITH THE TLM AND FD-TD
METHODS UNDER IDENTICAL SIMULATION CONDITIONS FOR THE
~ GEOMETRIES IN FIG. 3

Fig.3 |Mode |s/a| TRM TLM (CPU time) FD TD (CPU time)
e /6005220 0.0516 (144) | 0.0517 (51)
a 1/310.0445 | 0.0440 (145) | 0.0442 (51)
6) |rybrid] 0.0278 (357 | 0.0278 (117) *_|
o | Hybrid 0.0405 (357) | 0.0405 (117)

be extracted by discrete Fourier transform, as in the TLM
method

(5)

Both the stability factor s and the number of iterations n
strongly affect the spectral response.

In order to test this algorithm for validity, it has been
applied to a simple rectangular cavity with sides 12 Al X
6Al Xx8Al. We have assumed a dominant TE;, mode in
the initial value assignment. The time-domain solution is
given in Fig. 2(a). Discontinuous field figures are due to
the numerical error caused by the finite-difference form of
(2). Fig. 2(b) compares the frequency responses obtained
with the FD-TD and TLM methods under identical con-
ditions. The responses are not distinguishable. Five
hundred iterations have been used. The peak of the solu-
tion is located at A//A =0.0750 in both methods. The
exact analytical solution is 0.07511. Even though a small
number of meshes is used in this algorithm when com-
pared with the scattering problems in [9]-[13], it is noted
that the accuracy in the solution of the eigenvalue prob-
lems is better than that of the scattering problems by one
order of magnitude.

S(f) = X F"(io Jor ko)exp(— j2msnf).

VI. NUMERICAL RESULTS

We have applied this technique to most of the examples
described in the TLM literature and obtained practically
identical results. The method requires less than one-half of
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'Fig. 4. Finline cavity.

TABLEII
RESONANT FREQUENCIES OF THE UNILATERAL
FINLINE CAVITY IN FiG. 4, OBTAINED WITH
VARIOUS METHODS

Saguet [16]

Variable
$.D.A.
DA Vesh TLM TDFD T.LM,

This method

Resonant

Frequency (Giiz) 10.77 10.14 10.74 10.74

unber of 1000 600 600

CPU Time(s) 170 380

GHz

: This method
: S.D.A method

7 e .

—

0.0 0.1 0.2 - 03 G.4 s

Fig. 5. Dispersion diagram of unilateral finline with the cross-sectional
geometry given in Fig. 4.

the CPU time spent by the equivalent TLM program
under identical conditions, including the initial excitation
distribution. Furthermore, while the TLM procedure re--

‘quires 22 real memory stores per 3-D node in an isotropic

dielectric, the FD-TD method requires only seven real
memory stores per node. Fig. 3(a), (b), and (c) shows
structures for which solutions have been computed with
this method: The dominant resonant frequencies of these
structures are given and compared with the TLM solution
in Table I. The inhomogeneous rectangular cavity of Fig. 3
(b) and (c) illustrates the capability of this algorithm to
solve hybrid field problems. The number of nodes chosen
in each problem is the same as that employed in the TLM
solution.  ~

Furthermore, we have computed the resonant frequency
of a finline resonator (Fig. 4.) treated previously by Saguet
[16]. Results are compared in Table II, which includes a
value obtained with the spectral-domain method by Saguet.
Fig. 5§ shows the dispersion characteristics of a finline with
the same cross section, as obtained with our method.
Results calculated with our spectral-domain program are
also shown in the same figure. In order to compare conver-
gence of both time-domain methods, solutions obtained
after every fifth iteration are drawn in Fig. 6. The results
show virtually identical convergence.

To show the versatility of this method, the cha.ractens-
tics of a microstrip resonator on anisotropic substrate are
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TABLE III
DOMINANT RESONANT FREQUENCIES OBTAINED
BY BOTH THE TLLM AND THE FD-TD METHODS

H<L 6 8 10 15 20

34 15 72 12.24 10 14 714 5.46

TLM 481 14 22 1M1 918 6 3 4
(G 6 98

Averag 14 97 17 , 9 66 6 75 522

FD - TD {GHz} 14 64 11 52 [ 9 54 [ 6.78 5.28 l

computed in the last example, shown in Fig. 7. Several
different resonant frequencies obtained by changing the
length ¢ are tabulated in Table III. It is well known [17]
that the TLM simulation of 3-D inhomogeneous planar
structures involves dielectric interface ambiguity. The best
way to resolve this error is to employ two dielectric sub-
strate thicknesses differing by one Al In our case, 3A/ and
4 Al are used. The final result is obtained by taking the
average of the solutions obtained for these two values. In

a/al =13
b/al = 7
h/al = 3
w/al = 3

Al = 0.5 mm

Microstrip cavity on anisotropic substrate.

order to illustrate this process, frequency spectra obtained
with the TLM method for the two cases where c¢ is equal to
10A/! are shown in Fig. 8. The solution obtained with the
FD-TD method is also drawn in the same figure. As
expected, the latter solution is located exactly between the
two values obtained with the TLM method. This clearly
illustrates the accuracy and convenience of the FD-TD
method in such situations. Fig. 9 shows the dispersion
characteristics of the microstrip which has the same cross
section as that in Fig. 7. Again, both methods give very
similar results except at higher frequencies, where the
discretization errors associated with both methods become
more pronounced, and their differences are more visible.

VIL

The proposed new application of the FD-TD method to
3-D eigenvalue problems gives practically the same results

CONCLUSIONS
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Fig. 9. Dispersion diagram of the anisotropic microstrip in Fig. 7.

‘as the TLM method under identical simulation conditions.
However, the overall CPU time and storage requirements
are typically less than half those needed in the TLM
solution. Other advantages reside in the ease with which
field distributions can be computed, and in the elimination
of dielectric boundary error in planar structures. Further
efforts are being made to implement losses, variable mesh
size, and nonlinarity in the FD-TD procedure.
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